Newer
Older
//======================================================================================================================
//
// This file is part of waLBerla. waLBerla is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// waLBerla is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
//
//! \file 03_AdvancedLBMCodegen.cpp
//! \author Frederik Hennig <frederik.hennig@fau.de>
//
//======================================================================================================================
#include "blockforest/all.h"
#include "core/all.h"
#if defined(WALBERLA_BUILD_WITH_CUDA)
# include "cuda/AddGPUFieldToStorage.h"
# include "cuda/DeviceSelectMPI.h"
# include "cuda/HostFieldAllocator.h"
# include "cuda/ParallelStreams.h"
# include "cuda/communication/GPUPackInfo.h"
# include "cuda/communication/UniformGPUScheme.h"
#include "domain_decomposition/all.h"
#include "field/all.h"
#include "geometry/all.h"
#include "stencil/D2Q9.h"
#include "timeloop/all.h"
// Codegen Includes
#include "CumulantMRTNoSlip.h"
#include "CumulantMRTPackInfo.h"
#include "CumulantMRTSweep.h"
namespace walberla
{
///////////////////////
/// Typedef Aliases ///
///////////////////////
// Communication Pack Info
typedef pystencils::CumulantMRTPackInfo PackInfo_T;
// LB Method Stencil
typedef stencil::D2Q9 Stencil_T;
// PDF field type
typedef field::GhostLayerField< real_t, Stencil_T::Size > PdfField_T;
// Velocity Field Type
typedef field::GhostLayerField< real_t, Stencil_T::D > VectorField_T;
// Boundary Handling
typedef walberla::uint8_t flag_t;
typedef FlagField< flag_t > FlagField_T;
typedef lbm::CumulantMRTNoSlip NoSlip_T;
#if defined(WALBERLA_BUILD_WITH_CUDA)
typedef cuda::GPUField< real_t > GPUField;
//////////////////////////////////////////
/// Shear Flow Velocity Initialization ///
//////////////////////////////////////////
void initShearFlowVelocityField(const shared_ptr< StructuredBlockForest >& blocks, const BlockDataID& velocityFieldId,
math::RealRandom< real_t > rng(config.getParameter< std::mt19937::result_type >("noiseSeed", 42));
real_t velocityMagnitude = config.getParameter< real_t >("velocityMagnitude", real_c(0.08));
real_t noiseMagnitude = config.getParameter< real_t >("noiseMagnitude", real_c(0.1) * velocityMagnitude);
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
real_t n_y = real_c(blocks->getNumberOfYCells());
for (auto blockIt = blocks->begin(); blockIt != blocks->end(); ++blockIt)
{
auto u = (*blockIt).getData< VectorField_T >(velocityFieldId);
for (auto cellIt = u->beginWithGhostLayerXYZ(); cellIt != u->end(); ++cellIt)
{
Cell globalCell(cellIt.cell());
blocks->transformBlockLocalToGlobalCell(globalCell, *blockIt);
real_t relative_y = real_c(globalCell.y()) / n_y;
u->get(cellIt.cell(), 0) = relative_y < 0.3 || relative_y > 0.7 ? velocityMagnitude : -velocityMagnitude;
u->get(cellIt.cell(), 1) = noiseMagnitude * rng();
}
}
}
/////////////////////
/// Main Function ///
/////////////////////
int main(int argc, char** argv)
{
walberla::Environment walberlaEnv(argc, argv);
if (!walberlaEnv.config()) { WALBERLA_ABORT("No configuration file specified!"); }
///////////////////////////////////////////////////////
/// Block Storage Creation and Simulation Parameter ///
///////////////////////////////////////////////////////
auto blocks = blockforest::createUniformBlockGridFromConfig(walberlaEnv.config());
// read parameters
auto parameters = walberlaEnv.config()->getOneBlock("Parameters");
const uint_t timesteps = parameters.getParameter< uint_t >("timesteps", uint_c(10));
const real_t omega = parameters.getParameter< real_t >("omega", real_c(1.8));
const double remainingTimeLoggerFrequency =
parameters.getParameter< double >("remainingTimeLoggerFrequency", 3.0); // in seconds
const uint_t VTKwriteFrequency = parameters.getParameter< uint_t >("VTKwriteFrequency", 1000);
////////////////////////////////////
/// PDF Field and Velocity Setup ///
////////////////////////////////////
BlockDataID velocityFieldId = field::addToStorage< VectorField_T >(blocks, "velocity", real_c(0.0), field::fzyx);
BlockDataID flagFieldId = field::addFlagFieldToStorage< FlagField_T >(blocks, "flag field");
#if defined(WALBERLA_BUILD_WITH_CUDA)
// GPU Field for PDFs
BlockDataID pdfFieldId = cuda::addGPUFieldToStorage< cuda::GPUField< real_t > >(
blocks, "pdf field on GPU", Stencil_T::Size, field::fzyx, uint_t(1));
// GPU Velocity Field
BlockDataID velocityFieldIdGPU =
cuda::addGPUFieldToStorage< VectorField_T >(blocks, velocityFieldId, "velocity on GPU", true);
#else
// CPU Field for PDFs
BlockDataID pdfFieldId = field::addToStorage< PdfField_T >(blocks, "pdf field", real_c(0.0), field::fzyx);
auto shearFlowSetup = walberlaEnv.config()->getOneBlock("ShearFlowSetup");
initShearFlowVelocityField(blocks, velocityFieldId, shearFlowSetup);
real_t rho = shearFlowSetup.getParameter("rho", real_c(1.0));
#if defined(WALBERLA_BUILD_WITH_CUDA)
cuda::fieldCpy< GPUField, VectorField_T >(blocks, velocityFieldIdGPU, velocityFieldId);
pystencils::InitialPDFsSetter pdfSetter(pdfFieldId, velocityFieldIdGPU, rho);
#else
pystencils::InitialPDFsSetter pdfSetter(pdfFieldId, velocityFieldId, rho);
for (auto blockIt = blocks->begin(); blockIt != blocks->end(); ++blockIt)
{
/////////////
/// Sweep ///
/////////////
#if defined(WALBERLA_BUILD_WITH_CUDA)
pystencils::CumulantMRTSweep CumulantMRTSweep(pdfFieldId, velocityFieldIdGPU, omega);
#else
pystencils::CumulantMRTSweep CumulantMRTSweep(pdfFieldId, velocityFieldId, omega);
#endif
/////////////////////////
/// Boundary Handling ///
/////////////////////////
const FlagUID fluidFlagUID("Fluid");
auto boundariesConfig = walberlaEnv.config()->getOneBlock("Boundaries");
NoSlip_T noSlip(blocks, pdfFieldId);
geometry::initBoundaryHandling< FlagField_T >(*blocks, flagFieldId, boundariesConfig);
geometry::setNonBoundaryCellsToDomain< FlagField_T >(*blocks, flagFieldId, fluidFlagUID);
noSlip.fillFromFlagField< FlagField_T >(blocks, flagFieldId, FlagUID("NoSlip"), fluidFlagUID);
/////////////////
/// Time Loop ///
/////////////////
SweepTimeloop timeloop(blocks->getBlockStorage(), timesteps);
// Communication
#if defined(WALBERLA_BUILD_WITH_CUDA)
cuda::communication::UniformGPUScheme< Stencil_T > com(blocks, 0);
com.addPackInfo(make_shared< PackInfo_T >(pdfFieldId));
auto communication = std::function< void() >([&]() { com.communicate(nullptr); });
blockforest::communication::UniformBufferedScheme< Stencil_T > communication(blocks);
communication.addPackInfo(make_shared< PackInfo_T >(pdfFieldId));
timeloop.add() << BeforeFunction(communication, "communication") << Sweep(noSlip);
timeloop.add() << Sweep(CumulantMRTSweep);
// Time logger
timeloop.addFuncAfterTimeStep(timing::RemainingTimeLogger(timeloop.getNrOfTimeSteps(), remainingTimeLoggerFrequency),
"remaining time logger");
const std::string path = "vtk_out/tut03";
auto vtkOutput = vtk::createVTKOutput_BlockData(*blocks, "cumulant_mrt_velocity_field", VTKwriteFrequency, 0,
false, path, "simulation_step", false, true, true, false, 0);
#if defined(WALBERLA_BUILD_WITH_CUDA)
// Copy velocity data to CPU before output
vtkOutput->addBeforeFunction(
[&]() { cuda::fieldCpy< VectorField_T, GPUField >(blocks, velocityFieldId, velocityFieldIdGPU); });
#endif
auto velWriter = make_shared< field::VTKWriter< VectorField_T > >(velocityFieldId, "Velocity");
vtkOutput->addCellDataWriter(velWriter);
timeloop.addFuncBeforeTimeStep(vtk::writeFiles(vtkOutput), "VTK Output");
}
timeloop.run();
return EXIT_SUCCESS;
}
} // namespace walberla
int main(int argc, char** argv) { return walberla::main(argc, argv); }