Newer
Older
from itertools import chain
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
from pystencils.data_types import TypedSymbol, createType
"""
With fields one can formulate stencil-like update rules on structured grids.
This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.
Creating Fields:
To create a field use one of the static create* members. There are two options:
1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the
case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`)
2. create a more general kernel that works for variable array sizes. This can be used to create kernels
beforehand for a library. (see :func:`Field.createGeneric`)
Dimensions:
A field has spatial and index dimensions, where the spatial dimensions come first.
The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
looped over. Additionally N values are stored per cell. In this case spatialDimensions is two or three,
and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims``
Indexing:
When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol.
First specify the spatial offsets in [], then in case indexDimension>0 the indices in ()
Example without index dimensions:
>>> a = np.zeros([10, 10])
>>> f = Field.createFromNumpyArray("f", a, indexDimensions=0)
>>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4
Example with index dimensions: LBM D2Q9 stream pull
>>> stencil = np.array([[0,0], [0,1], [0,-1]])
>>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1)
>>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1)
>>> for i, offset in enumerate(stencil):
... sp.Eq(dst[0,0](i), src[-offset](i))
Eq(dst_C^0, src_C^0)
Eq(dst_C^1, src_S^1)
Eq(dst_C^2, src_N^2)
"""
@staticmethod
def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy'):
"""
Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes
:param fieldName: symbolic name for the field
:param dtype: numpy data type of the array the kernel is called with later
:param spatialDimensions: see documentation of Field
:param indexDimensions: see documentation of Field
:param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0)
"""
if isinstance(layout, str):
layout = spatialLayoutStringToTuple(layout, dim=spatialDimensions)
shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,))
strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,))
totalDimensions = spatialDimensions + indexDimensions
shape = tuple([shapeSymbol[i] for i in range(totalDimensions)])
strides = tuple([strideSymbol[i] for i in range(totalDimensions)])
npDataType = np.dtype(dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
return Field(fieldName, dtype, layout, shape, strides)
@staticmethod
def createFromNumpyArray(fieldName, npArray, indexDimensions=0):
"""
Creates a field based on the layout, data type, and shape of a given numpy array.
Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
:param fieldName: symbolic name for the field
:param npArray: numpy array
:param indexDimensions: see documentation of Field
"""
spatialDimensions = len(npArray.shape) - indexDimensions
if spatialDimensions < 1:
raise ValueError("Too many index dimensions. At least one spatial dimension required")
fullLayout = getLayoutOfArray(npArray)
spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions])
assert len(spatialLayout) == spatialDimensions
strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides])
shape = tuple(int(s) for s in npArray.shape)
npDataType = np.dtype(npArray.dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
return Field(fieldName, npArray.dtype, spatialLayout, shape, strides)
@staticmethod
def createFixedSize(fieldName, shape, indexDimensions=0, dtype=np.float64, layout='numpy'):
Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
:param fieldName: symbolic name for the field
:param shape: overall shape of the array
:param indexDimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
:param dtype: numpy data type of the array the kernel is called with later
:param layout: full layout of array, not only spatial dimensions
spatialDimensions = len(shape) - indexDimensions
assert spatialDimensions >= 1
if isinstance(layout, str):
layout = layoutStringToTuple(layout, spatialDimensions + indexDimensions)
shape = tuple(int(s) for s in shape)
strides = computeStrides(shape, layout)
npDataType = np.dtype(dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
spatialLayout = list(layout)
for i in range(spatialDimensions, len(layout)):
spatialLayout.remove(i)
return Field(fieldName, dtype, tuple(spatialLayout), shape, strides)
def __init__(self, fieldName, dtype, layout, shape, strides):
"""Do not use directly. Use static create* methods"""
self._fieldName = fieldName
self._layout = normalizeLayout(layout)
self.shape = shape
self.strides = strides
# index fields are currently only used for boundary handling
# the coordinates are not the loop counters in that case, but are read from this index field
self.isIndexField = False
def newFieldWithDifferentName(self, newName):
return Field(newName, self._dtype, self._layout, self.shape, self.strides)
@property
def spatialDimensions(self):
return len(self._layout)
@property
def indexDimensions(self):
return len(self.shape) - len(self._layout)
@property
def layout(self):
return self._layout
@property
def name(self):
return self._fieldName
@property
def spatialShape(self):
return self.shape[:self.spatialDimensions]
@property
def hasFixedShape(self):
try:
[int(i) for i in self.shape]
return True
except TypeError:
return False
return self.shape[self.spatialDimensions:]
@property
def spatialStrides(self):
return self.strides[:self.spatialDimensions]
@property
def indexStrides(self):
return self.strides[self.spatialDimensions:]
@property
def dtype(self):
return self._dtype
def __repr__(self):
return self._fieldName
def neighbor(self, coordId, offset):
offsetList = [0] * self.spatialDimensions
offsetList[coordId] = offset
return Field.Access(self, tuple(offsetList))
def center(self):
center = tuple([0] * self.spatialDimensions)
return Field.Access(self, center)
def __getitem__(self, offset):
if type(offset) is np.ndarray:
offset = tuple(offset)
if type(offset) is str:
offset = tuple(directionStringToOffset(offset, self.spatialDimensions))
if type(offset) is not tuple:
offset = (offset,)
if len(offset) != self.spatialDimensions:
raise ValueError("Wrong number of spatial indices: "
"Got %d, expected %d" % (len(offset), self.spatialDimensions))
return Field.Access(self, offset)
def __call__(self, *args, **kwargs):
center = tuple([0]*self.spatialDimensions)
return Field.Access(self, center)(*args, **kwargs)
def __hash__(self):
return hash((self._layout, self.shape, self.strides, self._dtype, self._fieldName))
def __eq__(self, other):
selfTuple = (self.shape, self.strides, self.name, self.dtype)
otherTuple = (other.shape, other.strides, other.name, other.dtype)
return selfTuple == otherTuple
PREFIX = "f"
STRIDE_PREFIX = PREFIX + "stride_"
SHAPE_PREFIX = PREFIX + "shape_"
STRIDE_DTYPE = "const int *"
SHAPE_DTYPE = "const int *"
DATA_PREFIX = PREFIX + "d_"
class Access(sp.Symbol):
def __new__(cls, name, *args, **kwargs):
obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
return obj
def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None):
fieldName = field.name
offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets
constantOffsets = not any([isinstance(o, sp.Basic) for o in offsetsAndIndex])
if not idx:
idx = tuple([0] * field.indexDimensions)
if constantOffsets:
offsetName = offsetToDirectionString(offsets)
if field.indexDimensions == 0:
superscript = str(idx[0])
else:
idxStr = ",".join([str(e) for e in idx])
else:
offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex))))
symbolName = "%s_%s" % (fieldName, offsetName)
if superscript is not None:
symbolName += "^" + superscript
obj = super(Field.Access, self).__xnew__(self, symbolName)
obj._field = field
obj._offsets = []
for o in offsets:
if isinstance(o, sp.Basic):
obj._offsets.append(o)
else:
obj._offsets.append(int(o))
obj._offsetName = offsetName
obj._superscript = superscript
obj._index = idx
return obj
def __getnewargs__(self):
return self.field, self.offsets, self.index
__xnew__ = staticmethod(__new_stage2__)
__xnew_cached_ = staticmethod(cacheit(__new_stage2__))
def __call__(self, *idx):
if self._index != tuple([0]*self.field.indexDimensions):
print(self._index, tuple([0]*self.field.indexDimensions))
raise ValueError("Indexing an already indexed Field.Access")
idx = tuple(idx)
if len(idx) != self.field.indexDimensions and idx != (0,):
raise ValueError("Wrong number of indices: "
"Got %d, expected %d" % (len(idx), self.field.indexDimensions))
return Field.Access(self.field, self._offsets, idx)
def __getitem__(self, *idx):
return self.__call__(*idx)
def __iter__(self):
"""This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
The __getitem__ would make it iterable"""
raise TypeError("Field access is not iterable")
@property
def field(self):
return self._field
@property
def offsets(self):
return self._offsets
@offsets.setter
def offsets(self, value):
self._offsets = value
@property
def requiredGhostLayers(self):
return int(np.max(np.abs(self._offsets)))
@property
def nrOfCoordinates(self):
return len(self._offsets)
@property
def offsetName(self):
return self._offsetName
def _latex(self, arg):
if self._superscript:
return "{{%s}_{%s}^{%s}}" % (self._field.name, self._offsetName, self._superscript)
else:
return "{{%s}_{%s}}" % (self._field.name, self._offsetName)
@property
def index(self):
return self._index
def getNeighbor(self, *offsets):
return Field.Access(self.field, offsets, self.index)
def getShifted(self, *shift):
return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)
def _hashable_content(self):
superClassContents = list(super(Field.Access, self)._hashable_content())
t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets)
def extractCommonSubexpressions(equations):
"""
Uses sympy to find common subexpressions in equations and returns
them in a topologically sorted order, ready for evaluation.
Usually called before list of equations is passed to :func:`createKernel`
"""
replacements, newEq = sp.cse(equations)
# Workaround for older sympy versions: here subexpressions (temporary = True) are extracted
# which leads to problems in Piecewise functions which have to a default case indicated by True
symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true}
replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true]
equations = replacementEqs + newEq
topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations])
equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs]
def getLayoutFromStrides(strides, indexDimensionIds=[]):
coordinates = list(range(len(strides)))
relevantStrides = [stride for i, stride in enumerate(strides) if i not in indexDimensionIds]
result = [x for (y, x) in sorted(zip(relevantStrides, coordinates), key=lambda pair: pair[0], reverse=True)]
return normalizeLayout(result)
def getLayoutOfArray(arr, indexDimensionIds=[]):
"""
Returns a list indicating the memory layout (linearization order) of the numpy array.
Example:
>>> getLayoutOfArray(np.zeros([3,3,3]))
In this example the loop over the zeroth coordinate should be the outermost loop,
followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
with different memory layout can be created.
The indexDimensionIds parameter leaves specifies which coordinates should not be
return getLayoutFromStrides(arr.strides, indexDimensionIds)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def createNumpyArrayWithLayout(shape, layout):
"""
Creates a numpy array with
:param shape: shape of the resulting array
:param layout: layout as tuple, where the coordinates are ordered from slow to fast
>>> res = createNumpyArrayWithLayout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
>>> res.shape
(2, 3, 4, 5)
>>> getLayoutOfArray(res)
(3, 2, 0, 1)
"""
assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
currentLayout = list(range(len(shape)))
swaps = []
for i in range(len(layout)):
if currentLayout[i] != layout[i]:
indexToSwapWith = currentLayout.index(layout[i])
swaps.append((i, indexToSwapWith))
currentLayout[i], currentLayout[indexToSwapWith] = currentLayout[indexToSwapWith], currentLayout[i]
assert tuple(currentLayout) == tuple(layout)
shape = list(shape)
for a, b in swaps:
shape[a], shape[b] = shape[b], shape[a]
res = np.empty(shape, order='c')
for a, b in reversed(swaps):
res = res.swapaxes(a, b)
return res
def spatialLayoutStringToTuple(layoutStr, dim):
if layoutStr in ('fzyx', 'zyxf'):
assert dim <= 3
return tuple(reversed(range(dim)))
if layoutStr == "fzyx" or layoutStr == 'f' or layoutStr == 'reverseNumpy':
return tuple(reversed(range(dim)))
elif layoutStr == 'c' or layoutStr == 'numpy':
return tuple(range(dim))
raise ValueError("Unknown layout descriptor " + layoutStr)
def layoutStringToTuple(layoutStr, dim):
if layoutStr == 'fzyx':
assert dim <= 4
return tuple(reversed(range(dim)))
elif layoutStr == 'zyxf':
assert dim <= 4
return tuple(reversed(range(dim - 1))) + (dim-1,)
elif layoutStr == 'f' or layoutStr == 'reverseNumpy':
return tuple(reversed(range(dim)))
elif layoutStr == 'c' or layoutStr == 'numpy':
return tuple(range(dim))
raise ValueError("Unknown layout descriptor " + layoutStr)
def normalizeLayout(layout):
"""Takes a layout tuple and subtracts the minimum from all entries"""
minEntry = min(layout)
return tuple(i - minEntry for i in layout)
def computeStrides(shape, layout):
"""
Computes strides assuming no padding exists
:param shape: shape (size) of array
:param layout: layout specification as tuple
:return: strides in elements, not in bytes
"""
N = len(shape)
assert len(layout) == N
assert len(set(layout)) == N
strides = [0] * N
product = 1
for j in reversed(layout):
strides[j] = product
product *= shape[j]
return tuple(strides)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def offsetComponentToDirectionString(coordinateId, value):
"""
Translates numerical offset to string notation.
x offsets are labeled with east 'E' and 'W',
y offsets with north 'N' and 'S' and
z offsets with top 'T' and bottom 'B'
If the absolute value of the offset is bigger than 1, this number is prefixed.
:param coordinateId: integer 0, 1 or 2 standing for x,y and z
:param value: integer offset
Example:
>>> offsetComponentToDirectionString(0, 1)
'E'
>>> offsetComponentToDirectionString(1, 2)
'2N'
"""
nameComponents = (('W', 'E'), # west, east
('S', 'N'), # south, north
('B', 'T'), # bottom, top
)
if value == 0:
result = ""
elif value < 0:
result = nameComponents[coordinateId][0]
else:
result = nameComponents[coordinateId][1]
if abs(value) > 1:
result = "%d%s" % (abs(value), result)
return result
def offsetToDirectionString(offsetTuple):
"""
Translates numerical offset to string notation.
For details see :func:`offsetComponentToDirectionString`
:param offsetTuple: 3-tuple with x,y,z offset
Example:
>>> offsetToDirectionString([1, -1, 0])
'SE'
>>> offsetToDirectionString(([-3, 0, -2]))
'2B3W'
"""
names = ["", "", ""]
for i in range(len(offsetTuple)):
names[i] = offsetComponentToDirectionString(i, offsetTuple[i])
name = "".join(reversed(names))
if name == "":
name = "C"
return name
def directionStringToOffset(directionStr, dim=3):
"""
Reverse mapping of :func:`offsetToDirectionString`
:param directionStr: string representation of offset
:param dim: dimension of offset, i.e the length of the returned list
>>> directionStringToOffset('NW', dim=3)
array([-1, 1, 0])
>>> directionStringToOffset('NW', dim=2)
array([-1, 1])
>>> directionStringToOffset(offsetToDirectionString([3,-2,1]))
array([ 3, -2, 1])
"""
offsetMap = {
'C': np.array([0, 0, 0]),
'W': np.array([-1, 0, 0]),
'E': np.array([1, 0, 0]),
'S': np.array([0, -1, 0]),
'N': np.array([0, 1, 0]),
'B': np.array([0, 0, -1]),
'T': np.array([0, 0, 1]),
}
offset = np.array([0, 0, 0])
while len(directionStr) > 0:
factor = 1
firstNonDigit = 0
while directionStr[firstNonDigit].isdigit():
firstNonDigit += 1
if firstNonDigit > 0:
factor = int(directionStr[:firstNonDigit])
directionStr = directionStr[firstNonDigit:]
curOffset = offsetMap[directionStr[0]]
offset += factor * curOffset
directionStr = directionStr[1:]
return offset[:dim]
if __name__ == '__main__':
f = Field.createGeneric('f', spatialDimensions=2, indexDimensions=1)
fa = f[0, 1](4) ** 2
print(fa)
print(sp.latex(fa))