Newer
Older
import sympy as sp
import pystencils as ps

Alexander Reinauer
committed
import numpy as np
import pytest
from itertools import product
from pystencils.rng import random_symbol
from pystencils.astnodes import SympyAssignment
from pystencils.node_collection import NodeCollection

Alexander Reinauer
committed
def advection_diffusion(dim: int):

Alexander Reinauer
committed
# parameters
if dim == 2:
L = (32, 32)

Alexander Reinauer
committed
elif dim == 3:
L = (16, 16, 16)

Alexander Reinauer
committed
dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target=ps.Target.CPU)

Alexander Reinauer
committed
n_field = dh.add_array('n', values_per_cell=1)
j_field = dh.add_array('j', values_per_cell=3 ** dim // 2, field_type=ps.FieldType.STAGGERED_FLUX)

Alexander Reinauer
committed
velocity_field = dh.add_array('v', values_per_cell=dim)
D = 0.0666
time = 100

Alexander Reinauer
committed
def grad(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dim)])
flux_eq = - D * grad(n_field)
fvm_eq = ps.fd.FVM1stOrder(n_field, flux=flux_eq)
vof_adv = ps.fd.VOF(j_field, velocity_field, n_field)
# merge calculation of advection and diffusion terms
flux = []
for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_field)):
assert adv.lhs == div.lhs
flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs))
flux_kernel = ps.create_staggered_kernel(flux).compile()
pde_kernel = ps.create_kernel(fvm_eq.discrete_continuity(j_field)).compile()

Alexander Reinauer
committed
sync_conc = dh.synchronization_function([n_field.name])
# analytical density calculation
def density(pos: np.ndarray, time: int, D: float):
return (4 * np.pi * D * time)**(-dim / 2) * \
np.exp(-np.sum(np.square(pos), axis=-1) / (4 * D * time))

Alexander Reinauer
committed
pos = np.zeros((*L, dim))
xpos = np.arange(-L[0] // 2, L[0] // 2)
ypos = np.arange(-L[1] // 2, L[1] // 2)

Alexander Reinauer
committed
if dim == 2:
pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos)
elif dim == 3:
zpos = np.arange(-L[2] // 2, L[2] // 2)

Alexander Reinauer
committed
pos[..., 2], pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos, zpos)
pos += 0.5

Alexander Reinauer
committed
def run(velocity: np.ndarray, time: int):
dh.fill(n_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(j_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
# set initial values for velocity and density
for i in range(dim):
dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True)
dh.fill(n_field.name, 0)
if dim == 2:
start = ps.make_slice[L[0] // 2 - 1:L[0] // 2 + 1, L[1] // 2 - 1:L[1] // 2 + 1]
else:
start = ps.make_slice[L[0] // 2 - 1:L[0] // 2 + 1, L[1] // 2 - 1:L[1] // 2 + 1,
L[2] // 2 - 1:L[2] // 2 + 1]
dh.fill(n_field.name, 2**-dim, slice_obj=start)

Alexander Reinauer
committed
sync_conc()
for i in range(time):
dh.run_kernel(flux_kernel)
dh.run_kernel(pde_kernel)
sync_conc()
sim_density = dh.gather_array(n_field.name)
# check that mass was conserved
assert np.isclose(sim_density.sum(), 1)
assert np.all(sim_density > 0)
# check that the maximum is in the right place
peak = np.unravel_index(np.argmax(sim_density, axis=None), sim_density.shape)
assert np.allclose(peak, np.array(L) // 2 - 0.5 + velocity * time, atol=0.5)
# check the concentration profile
if np.linalg.norm(velocity) == 0:
calc_density = density(pos - velocity * time, time, D)
target = [time, D]
pytest.importorskip('scipy.optimize')
from scipy.optimize import curve_fit
popt, _ = curve_fit(lambda x, t, D: density(x - velocity * time, t, D),
pos.reshape(-1, dim),
sim_density.reshape(-1),
p0=target)
assert np.isclose(popt[0], time, rtol=0.1)
assert np.isclose(popt[1], D, rtol=0.1)
assert np.allclose(calc_density, sim_density, atol=1e-4)
return lambda v: run(np.array(v), time)
advection_diffusion.runners = {}
@pytest.mark.parametrize("velocity", list(product([0, -0.047, 0.041], [0, -0.031, 0.023])))
def test_advection_diffusion_2d(velocity):
if 2 not in advection_diffusion.runners:
advection_diffusion.runners[2] = advection_diffusion(2)
advection_diffusion.runners[2](velocity)
@pytest.mark.parametrize("velocity", list(product([0, -0.047, 0.041], [0, -0.031, 0.023], [0, -0.017, 0.011])))
def test_advection_diffusion_3d(velocity):
if 3 not in advection_diffusion.runners:
advection_diffusion.runners[3] = advection_diffusion(3)
advection_diffusion.runners[3](velocity)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def advection_diffusion_fluctuations(dim: int):
# parameters
if dim == 2:
L = (32, 32)
stencil_factor = np.sqrt(1 / (1 + np.sqrt(2)))
elif dim == 3:
L = (16, 16, 16)
stencil_factor = np.sqrt(1 / (1 + 2 * np.sqrt(2) + 4.0 / 3.0 * np.sqrt(3)))
dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target=ps.Target.CPU)
n_field = dh.add_array('n', values_per_cell=1)
j_field = dh.add_array('j', values_per_cell=3 ** dim // 2, field_type=ps.FieldType.STAGGERED_FLUX)
velocity_field = dh.add_array('v', values_per_cell=dim)
D = 0.00666
time = 10000
def grad(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dim)])
flux_eq = - D * grad(n_field)
fvm_eq = ps.fd.FVM1stOrder(n_field, flux=flux_eq)
vof_adv = ps.fd.VOF(j_field, velocity_field, n_field)
# merge calculation of advection and diffusion terms
flux = []
for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_field)):
assert adv.lhs == div.lhs
flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs))
flux = ps.AssignmentCollection(flux)
rng_symbol_gen = random_symbol(flux.subexpressions, dim=dh.dim)
for i in range(len(flux.main_assignments)):
n = j_field.staggered_stencil[i]
assert flux.main_assignments[i].lhs == j_field.staggered_access(n)
# calculate mean density
dens = (n_field.neighbor_vector(n) + n_field.center_vector)[0] / 2
# multyply by smoothed haviside function so that fluctuation will not get bigger that the density
dens *= sp.Max(0, sp.Min(1.0, n_field.neighbor_vector(n)[0]) * sp.Min(1.0, n_field.center_vector[0]))
# lenght of the vector
length = sp.sqrt(len(j_field.staggered_stencil[i]))
# amplitude of the random fluctuations
fluct = sp.sqrt(2 * dens * D) * sp.sqrt(1 / length) * stencil_factor
# add fluctuations
fluct *= 2 * (next(rng_symbol_gen) - 0.5) * sp.sqrt(3)
flux.main_assignments[i] = ps.Assignment(flux.main_assignments[i].lhs, flux.main_assignments[i].rhs + fluct)
# Add the folding to the flux, so that the random numbers persist through the ghostlayers.
fold = {ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i):
ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i) % L[i] for i in range(len(L))}
flux.subs(fold)
flux_kernel = ps.create_staggered_kernel(flux).compile()
pde_kernel = ps.create_kernel(fvm_eq.discrete_continuity(j_field)).compile()
sync_conc = dh.synchronization_function([n_field.name])
# analytical density distribution calculation
def P(rho, density_init):
res = []
for r in rho:
res.append(np.power(density_init, r) * np.exp(-density_init) / np.math.gamma(r + 1))
return np.array(res)
def run(density_init: float, velocity: np.ndarray, time: int):
dh.fill(n_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(j_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
# set initial values for velocity and density
for i in range(dim):
dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True)
dh.fill(n_field.name, density_init)
measurement_intervall = 10
warm_up = 1000
data = []
sync_conc()
for i in range(warm_up):
dh.run_kernel(flux_kernel, seed=42, time_step=i)
dh.run_kernel(pde_kernel)
sync_conc()
for i in range(time):
dh.run_kernel(flux_kernel, seed=42, time_step=i + warm_up)
dh.run_kernel(pde_kernel)
sync_conc()
if(i % measurement_intervall == 0):
data = np.append(data, dh.gather_array(n_field.name).ravel(), 0)
# test mass conservation
np.testing.assert_almost_equal(dh.gather_array(n_field.name).mean(), density_init)
n_bins = 50
density_value, bins = np.histogram(data, density=True, bins=n_bins)
bins_mean = bins[:-1] + (bins[1:] - bins[:-1]) / 2
analytical_value = P(bins_mean, density_init)
print(density_value - analytical_value)
np.testing.assert_allclose(density_value, analytical_value, atol=2e-3)
return lambda density_init, v: run(density_init, np.array(v), time)
advection_diffusion_fluctuations.runners = {}
@pytest.mark.parametrize("velocity", list(product([0, 0.00041], [0, -0.00031])))
@pytest.mark.parametrize("density", [27.0, 56.5])
@pytest.mark.longrun
def test_advection_diffusion_fluctuation_2d(density, velocity):
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
if 2 not in advection_diffusion_fluctuations.runners:
advection_diffusion_fluctuations.runners[2] = advection_diffusion_fluctuations(2)
advection_diffusion_fluctuations.runners[2](density, velocity)
@pytest.mark.parametrize("velocity", [(0.0, 0.0, 0.0), (0.00043, -0.00017, 0.00028)])
@pytest.mark.parametrize("density", [27.0, 56.5])
@pytest.mark.longrun
def test_advection_diffusion_fluctuation_3d(density, velocity):
if 3 not in advection_diffusion_fluctuations.runners:
advection_diffusion_fluctuations.runners[3] = advection_diffusion_fluctuations(3)
advection_diffusion_fluctuations.runners[3](density, velocity)
def diffusion_reaction(fluctuations: bool):
# parameters
L = (32, 32)
stencil_factor = np.sqrt(1 / (1 + np.sqrt(2)))
dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target=ps.Target.CPU)
species = 2
n_fields = []
j_fields = []
r_flux_fields = []
for i in range(species):
n_fields.append(dh.add_array(f'n_{i}', values_per_cell=1))
j_fields.append(dh.add_array(f'j_{i}', values_per_cell=3 ** dh.dim // 2,
field_type=ps.FieldType.STAGGERED_FLUX))
r_flux_fields.append(dh.add_array(f'r_{i}', values_per_cell=1))
velocity_field = dh.add_array('v', values_per_cell=dh.dim)
D = 0.00666
time = 1000
r_order = [2.0, 0.0]
r_rate_const = 0.00001
r_coefs = [-2, 1]
def grad(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)])
flux_eq = - D * grad(n_fields[0])
fvm_eq = ps.fd.FVM1stOrder(n_fields[0], flux=flux_eq)
vof_adv = ps.fd.VOF(j_fields[0], velocity_field, n_fields[0])
continuity_assignments = fvm_eq.discrete_continuity(j_fields[0])
# merge calculation of advection and diffusion terms
flux = []
for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_fields[0])):
assert adv.lhs == div.lhs
flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs))
flux = ps.AssignmentCollection(flux)
if(fluctuations):
rng_symbol_gen = random_symbol(flux.subexpressions, dim=dh.dim)
for i in range(len(flux.main_assignments)):
n = j_fields[0].staggered_stencil[i]
assert flux.main_assignments[i].lhs == j_fields[0].staggered_access(n)
# calculate mean density
dens = (n_fields[0].neighbor_vector(n) + n_fields[0].center_vector)[0] / 2
# multyply by smoothed haviside function so that fluctuation will not get bigger that the density
dens *= sp.Max(0,
sp.Min(1.0, n_fields[0].neighbor_vector(n)[0]) * sp.Min(1.0, n_fields[0].center_vector[0]))
# lenght of the vector
length = sp.sqrt(len(j_fields[0].staggered_stencil[i]))
# amplitude of the random fluctuations
fluct = sp.sqrt(2 * dens * D) * sp.sqrt(1 / length) * stencil_factor
# add fluctuations
fluct *= 2 * (next(rng_symbol_gen) - 0.5) * sp.sqrt(3)
flux.main_assignments[i] = ps.Assignment(flux.main_assignments[i].lhs, flux.main_assignments[i].rhs + fluct)
# Add the folding to the flux, so that the random numbers persist through the ghostlayers.
fold = {ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i):
ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i) % L[i] for i in range(len(L))}
flux.subs(fold)
r_flux = NodeCollection([SympyAssignment(j_fields[i].center, 0) for i in range(species)])
reaction = r_rate_const
for i in range(species):
reaction *= sp.Pow(n_fields[i].center, r_order[i])
new_assignments = []
if fluctuations:
rng_symbol_gen = random_symbol(new_assignments, dim=dh.dim)
reaction_fluctuations = sp.sqrt(sp.Abs(reaction)) * 2 * (next(rng_symbol_gen) - 0.5) * sp.sqrt(3)
reaction_fluctuations *= sp.Min(1, sp.Abs(reaction**2))
else:
reaction_fluctuations = 0.0
for i in range(species):
r_flux_fields[i].center, (reaction + reaction_fluctuations) * r_coefs[i])
[r_flux.all_assignments.insert(0, new) for new in new_assignments]
continuity_assignments = [SympyAssignment(*assignment.args) for assignment in continuity_assignments]
continuity_assignments.append(SympyAssignment(n_fields[0].center, n_fields[0].center + r_flux_fields[0].center))
flux_kernel = ps.create_staggered_kernel(flux).compile()
reaction_kernel = ps.create_kernel(r_flux).compile()
config = ps.CreateKernelConfig(allow_double_writes=True)
pde_kernel = ps.create_kernel(continuity_assignments, config=config).compile()
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
sync_conc = dh.synchronization_function([n_fields[0].name, n_fields[1].name])
def f(t, r, n0, fac, fluctuations):
"""Calculates the amount of product created after a certain time of a reaction with form xA -> B
Args:
t: Time of the reation
r: Reaction rate constant
n0: Initial density of the
fac: Reaction order of A (this in most cases equals the stochometric coefficient x)
fluctuations: Boolian whether fluctuations were included during the reaction.
"""
if fluctuations:
return 1 / fac * (n0 + n0 / (n0 - (n0 + 1) * np.exp(fac * r * t)))
return 1 / fac * (n0 - (1 / (fac * r * t + (1 / n0))))
def run(density_init: float, velocity: np.ndarray, time: int):
for i in range(species):
dh.fill(n_fields[i].name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(j_fields[i].name, 0.0, ghost_layers=True, inner_ghost_layers=True)
dh.fill(r_flux_fields[i].name, 0.0, ghost_layers=True, inner_ghost_layers=True)
# set initial values for velocity and density
for i in range(dh.dim):
dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True)
dh.fill(n_fields[0].name, density_init)
dh.fill(n_fields[1].name, 0.0)
measurement_intervall = 10
data = []
sync_conc()
for i in range(time):
if(i % measurement_intervall == 0):
data.append([i, dh.gather_array(n_fields[1].name).mean(), dh.gather_array(n_fields[0].name).mean()])
dh.run_kernel(reaction_kernel, seed=41, time_step=i)
for s_idx in range(species):
flux_kernel(n_0=dh.cpu_arrays[n_fields[s_idx].name],
j_0=dh.cpu_arrays[j_fields[s_idx].name],
v=dh.cpu_arrays[velocity_field.name], seed=42 + s_idx, time_step=i)
pde_kernel(n_0=dh.cpu_arrays[n_fields[s_idx].name],
j_0=dh.cpu_arrays[j_fields[s_idx].name],
r_0=dh.cpu_arrays[r_flux_fields[s_idx].name])
sync_conc()
data = np.array(data).transpose()
x = data[0]
analytical_value = f(x, r_rate_const, density_init, abs(r_coefs[0]), fluctuations)
# test mass conservation
np.testing.assert_almost_equal(
dh.gather_array(n_fields[0].name).mean() + 2 * dh.gather_array(n_fields[1].name).mean(), density_init)
r_tol = 2e-3
if fluctuations:
r_tol = 3e-2
np.testing.assert_allclose(data[1], analytical_value, rtol=r_tol)
return lambda density_init, v: run(density_init, np.array(v), time)
advection_diffusion_fluctuations.runners = {}
@pytest.mark.parametrize("velocity", list(product([0, 0.0041], [0, -0.0031])))
@pytest.mark.parametrize("density", [27.0, 56.5])
@pytest.mark.parametrize("fluctuations", [False, True])
@pytest.mark.longrun
def test_diffusion_reaction(fluctuations, density, velocity):
diffusion_reaction.runner = diffusion_reaction(fluctuations)
diffusion_reaction.runner(density, velocity)
def VOF2(j: ps.field.Field, v: ps.field.Field, ρ: ps.field.Field, simplify=True):
"""Volume-of-fluid discretization of advection
Args:
j: the staggered field to write the fluxes to. Should have a D2Q9/D3Q27 stencil. Other stencils work too, but
incur a small error (D2Q5/D3Q7: v^2, D3Q19: v^3).
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
v: the flow velocity field
ρ: the quantity to advect
simplify: whether to simplify the generated expressions (slow, but makes them much more readable and faster)
"""
dim = j.spatial_dimensions
assert ps.FieldType.is_staggered(j)
def assume_velocity(e):
if not simplify:
return e
repl = {}
for c in e.atoms(sp.StrictGreaterThan, sp.GreaterThan):
if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number):
if c.rhs <= -1:
repl[c] = True
elif c.rhs >= 1:
repl[c] = False
for c in e.atoms(sp.StrictLessThan, sp.LessThan):
if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number):
if c.rhs >= 1:
repl[c] = True
elif c.rhs <= -1:
repl[c] = False
for c in e.atoms(sp.Equality):
if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number):
if c.rhs <= -1 or c.rhs >= 1:
repl[c] = False
return e.subs(repl)
class AABB:
def __init__(self, corner0, corner1):
self.dim = len(corner0)
self.minCorner = sp.zeros(self.dim, 1)
self.maxCorner = sp.zeros(self.dim, 1)
for i in range(self.dim):
self.minCorner[i] = sp.Piecewise((corner0[i], corner0[i] < corner1[i]), (corner1[i], True))
self.maxCorner[i] = sp.Piecewise((corner1[i], corner0[i] < corner1[i]), (corner0[i], True))
def intersect(self, other):
minCorner = [sp.Max(self.minCorner[d], other.minCorner[d]) for d in range(self.dim)]
maxCorner = [sp.Max(minCorner[d], sp.Min(self.maxCorner[d], other.maxCorner[d]))
for d in range(self.dim)]
return AABB(minCorner, maxCorner)
@property
def volume(self):
v = sp.prod([self.maxCorner[d] - self.minCorner[d] for d in range(self.dim)])
if simplify:
return sp.simplify(assume_velocity(v.rewrite(sp.Piecewise)))
else:
return v
fluxes = []
cell = AABB([-0.5] * dim, [0.5] * dim)
cell_s = AABB(sp.Matrix([-0.5] * dim) + v.center_vector, sp.Matrix([0.5] * dim) + v.center_vector)
for d, neighbor in enumerate(j.staggered_stencil):
c = sp.Matrix(ps.stencil.direction_string_to_offset(neighbor)[:dim])
cell_n = AABB(sp.Matrix([-0.5] * dim) + c, sp.Matrix([0.5] * dim) + c)
cell_ns = AABB(sp.Matrix([-0.5] * dim) + c + v.neighbor_vector(neighbor),
sp.Matrix([0.5] * dim) + c + v.neighbor_vector(neighbor))
fluxes.append(assume_velocity(ρ.center_vector * cell_s.intersect(cell_n).volume
- ρ.neighbor_vector(neighbor) * cell_ns.intersect(cell).volume))
assignments = []
for i, d in enumerate(j.staggered_stencil):
for lhs, rhs in zip(j.staggered_vector_access(d).values(), fluxes[i].values()):
assignments.append(ps.Assignment(lhs, rhs))
return assignments
@pytest.mark.parametrize("dim", [2, 3])
def test_advection(dim):
L = (8,) * dim
dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU)
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=3 ** dh.dim // 2, field_type=ps.FieldType.STAGGERED_FLUX)
u = dh.add_array('u', values_per_cell=dh.dim)
dh.cpu_arrays[c.name][:] = (np.random.random([l + 2 for l in L]))
dh.cpu_arrays[u.name][:] = (np.random.random([l + 2 for l in L] + [dim]) - 0.5) / 5
vof1 = ps.create_kernel(ps.fd.VOF(j, u, c)).compile()
dh.fill(j.name, np.nan, ghost_layers=True)
dh.run_kernel(vof1)
j1 = dh.gather_array(j.name).copy()
vof2 = ps.create_kernel(VOF2(j, u, c, simplify=False)).compile()
dh.fill(j.name, np.nan, ghost_layers=True)
dh.run_kernel(vof2)
j2 = dh.gather_array(j.name)
assert np.allclose(j1, j2)
@pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9"])
def test_ek(stencil):
# parameters
L = (40, 40)
D = sp.Symbol("D")
z = sp.Symbol("z")
# data structures
dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU)
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=int(stencil[-1]) // 2, field_type=ps.FieldType.STAGGERED_FLUX)
Phi = dh.add_array('Φ', values_per_cell=1)
# perform automatic discretization
def Gradient(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)])
flux_eq = -D * Gradient(c) + D * z * c.center * Gradient(Phi)
disc = ps.fd.FVM1stOrder(c, flux_eq)
flux_assignments = disc.discrete_flux(j)
continuity_assignments = disc.discrete_continuity(j)
# manual discretization
x_staggered = - c[-1, 0] + c[0, 0] + z * (c[-1, 0] + c[0, 0]) / 2 * (Phi[-1, 0] - Phi[0, 0])
y_staggered = - c[0, -1] + c[0, 0] + z * (c[0, -1] + c[0, 0]) / 2 * (Phi[0, -1] - Phi[0, 0])
xy_staggered = (- c[-1, -1] + c[0, 0]) / sp.sqrt(2) + \
z * (c[-1, -1] + c[0, 0]) / 2 * (Phi[-1, -1] - Phi[0, 0]) / sp.sqrt(2)
xY_staggered = (- c[-1, 1] + c[0, 0]) / sp.sqrt(2) + \
z * (c[-1, 1] + c[0, 0]) / 2 * (Phi[-1, 1] - Phi[0, 0]) / sp.sqrt(2)
A0 = (1 + sp.sqrt(2) if j.index_shape[0] == 4 else 1)
jj = j.staggered_access
divergence = -1 * sum([jj(d) for d in j.staggered_stencil
+ [ps.stencil.inverse_direction_string(d) for d in j.staggered_stencil]])
update = [ps.Assignment(c.center, c.center + divergence)]
flux = [ps.Assignment(j.staggered_access("W"), D * x_staggered / A0),
ps.Assignment(j.staggered_access("S"), D * y_staggered / A0)]
if j.index_shape[0] == 4:
flux += [ps.Assignment(j.staggered_access("SW"), D * xy_staggered / A0),
ps.Assignment(j.staggered_access("NW"), D * xY_staggered / A0)]
# compare
for a, b in zip(flux, flux_assignments):
assert a.lhs == b.lhs
assert sp.simplify(a.rhs - b.rhs) == 0
for a, b in zip(update, continuity_assignments):
assert a.lhs == b.lhs
assert a.rhs == b.rhs
@pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9", "D3Q7", "D3Q19", "D3Q27"])
@pytest.mark.parametrize("derivative", [0, 1])
def test_flux_stencil(stencil, derivative):
L = (40, ) * int(stencil[1])
dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU)
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=int(stencil[3:]) // 2, field_type=ps.FieldType.STAGGERED_FLUX)
def Gradient(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)])
eq = [sp.Matrix([sp.Symbol(f"a_{i}") * c.center for i in range(dh.dim)]), Gradient(c)][derivative]
disc = ps.fd.FVM1stOrder(c, flux=eq)
# check the continuity
continuity_assignments = disc.discrete_continuity(j)
assert [len(a.rhs.atoms(ps.field.Field.Access)) for a in continuity_assignments] == \
[int(stencil[3:])] * len(continuity_assignments)
# check the flux
flux_assignments = disc.discrete_flux(j)
assert [len(a.rhs.atoms(ps.field.Field.Access)) for a in flux_assignments] == [2] * len(flux_assignments)
@pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9", "D3Q7", "D3Q19", "D3Q27"])
def test_source_stencil(stencil):
L = (40, ) * int(stencil[1])
dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU)
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=int(stencil[3:]) // 2, field_type=ps.FieldType.STAGGERED_FLUX)
continuity_ref = ps.fd.FVM1stOrder(c).discrete_continuity(j)
for eq in [c.center] + [ps.fd.diff(c, i) for i in range(dh.dim)]:
disc = ps.fd.FVM1stOrder(c, source=eq)
diff = sp.simplify(disc.discrete_continuity(j)[0].rhs - continuity_ref[0].rhs)
if type(eq) is ps.field.Field.Access:
assert len(diff.atoms(ps.field.Field.Access)) == 1
else:
assert len(diff.atoms(ps.field.Field.Access)) == 2