Newer
Older
import pystencils
from pystencils.backends.cuda_backend import CudaBackend
from pystencils.backends.opencl_backend import OpenClBackend
from pystencils.opencl.opencljit import get_global_cl_queue, make_python_function
try:
import pyopencl as cl
HAS_OPENCL = True
import pystencils.opencl.autoinit
except Exception:
HAS_OPENCL = False
z, y, x = pystencils.fields("z, y, x: [2d]")
assignments = pystencils.AssignmentCollection({
z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu')
print(ast)
pystencils.show_code(ast, custom_backend=CudaBackend())
opencl_code = pystencils.get_code_str(ast, custom_backend=OpenClBackend())
assert "__global double * RESTRICT const _data_x" in str(opencl_code)
assert "__global double * RESTRICT" in str(opencl_code)
assert "get_local_id(0)" in str(opencl_code)
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit_fixed_size():
pytest.importorskip('pycuda')
z, y, x = pystencils.fields("z, y, x: [20,30]")
assignments = pystencils.AssignmentCollection({
z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu')
print(ast)
code = pystencils.show_code(ast, custom_backend=CudaBackend())
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
print(code)
opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
print(opencl_code)
cuda_kernel = ast.compile()
assert cuda_kernel is not None
import pycuda.gpuarray as gpuarray
x_cpu = np.random.rand(20, 30)
y_cpu = np.random.rand(20, 30)
z_cpu = np.random.rand(20, 30)
x = gpuarray.to_gpu(x_cpu)
y = gpuarray.to_gpu(y_cpu)
z = gpuarray.to_gpu(z_cpu)
cuda_kernel(x=x, y=y, z=z)
result_cuda = z.get()
import pyopencl.array as array
ctx = cl.create_some_context(0)
queue = cl.CommandQueue(ctx)
x = array.to_device(queue, x_cpu)
y = array.to_device(queue, y_cpu)
z = array.to_device(queue, z_cpu)
opencl_kernel = make_python_function(ast, queue, ctx)
assert opencl_kernel is not None
opencl_kernel(x=x, y=y, z=z)
result_opencl = z.get(queue)
assert np.allclose(result_cuda, result_opencl)
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit():
pytest.importorskip('pycuda')
z, y, x = pystencils.fields("z, y, x: [2d]")
assignments = pystencils.AssignmentCollection({
z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu')
print(ast)
pystencils.show_code(ast, custom_backend=CudaBackend())
pystencils.show_code(ast, custom_backend=OpenClBackend())
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
cuda_kernel = ast.compile()
assert cuda_kernel is not None
import pycuda.gpuarray as gpuarray
x_cpu = np.random.rand(20, 30)
y_cpu = np.random.rand(20, 30)
z_cpu = np.random.rand(20, 30)
x = gpuarray.to_gpu(x_cpu)
y = gpuarray.to_gpu(y_cpu)
z = gpuarray.to_gpu(z_cpu)
cuda_kernel(x=x, y=y, z=z)
result_cuda = z.get()
import pyopencl.array as array
ctx = cl.create_some_context(0)
queue = cl.CommandQueue(ctx)
x = array.to_device(queue, x_cpu)
y = array.to_device(queue, y_cpu)
z = array.to_device(queue, z_cpu)
opencl_kernel = make_python_function(ast, queue, ctx)
assert opencl_kernel is not None
opencl_kernel(x=x, y=y, z=z)
result_opencl = z.get(queue)
assert np.allclose(result_cuda, result_opencl)
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_opencl_jit_with_parameter():
pytest.importorskip('pycuda')
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
z, y, x = pystencils.fields("z, y, x: [2d]")
a = sp.Symbol('a')
assignments = pystencils.AssignmentCollection({
z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0]) + a
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu')
print(ast)
code = pystencils.show_code(ast, custom_backend=CudaBackend())
print(code)
opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
print(opencl_code)
cuda_kernel = ast.compile()
assert cuda_kernel is not None
import pycuda.gpuarray as gpuarray
x_cpu = np.random.rand(20, 30)
y_cpu = np.random.rand(20, 30)
z_cpu = np.random.rand(20, 30)
x = gpuarray.to_gpu(x_cpu)
y = gpuarray.to_gpu(y_cpu)
z = gpuarray.to_gpu(z_cpu)
cuda_kernel(x=x, y=y, z=z, a=5.)
result_cuda = z.get()
import pyopencl.array as array
ctx = cl.create_some_context(0)
queue = cl.CommandQueue(ctx)
x = array.to_device(queue, x_cpu)
y = array.to_device(queue, y_cpu)
z = array.to_device(queue, z_cpu)
opencl_kernel = make_python_function(ast, queue, ctx)
assert opencl_kernel is not None
opencl_kernel(x=x, y=y, z=z, a=5.)
result_opencl = z.get(queue)
assert np.allclose(result_cuda, result_opencl)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_without_cuda():
z, y, x = pystencils.fields("z, y, x: [20,30]")
assignments = pystencils.AssignmentCollection({
z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu')
print(ast)
opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
print(opencl_code)
x_cpu = np.random.rand(20, 30)
y_cpu = np.random.rand(20, 30)
z_cpu = np.random.rand(20, 30)
import pyopencl.array as array
ctx = cl.create_some_context(0)
queue = cl.CommandQueue(ctx)
x = array.to_device(queue, x_cpu)
y = array.to_device(queue, y_cpu)
z = array.to_device(queue, z_cpu)
opencl_kernel = make_python_function(ast, queue, ctx)
assert opencl_kernel is not None
opencl_kernel(x=x, y=y, z=z)
@pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
def test_kernel_creation():
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
z, y, x = pystencils.fields("z, y, x: [20,30]")
assignments = pystencils.AssignmentCollection({
z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='opencl')
print(ast.backend)
code = str(pystencils.show_code(ast))
print(code)
assert 'get_local_size' in code
opencl_kernel = ast.compile()
x_cpu = np.random.rand(20, 30)
y_cpu = np.random.rand(20, 30)
z_cpu = np.random.rand(20, 30)
import pyopencl.array as array
assert get_global_cl_queue()
x = array.to_device(get_global_cl_queue(), x_cpu)
y = array.to_device(get_global_cl_queue(), y_cpu)
z = array.to_device(get_global_cl_queue(), z_cpu)
assert opencl_kernel is not None
opencl_kernel(x=x, y=y, z=z)