Newer
Older
from enum import Enum
from itertools import chain
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
from pystencils.alignedarray import aligned_empty
from pystencils.data_types import TypedSymbol, createType, createCompositeTypeFromString, StructType
from pystencils.sympyextensions import isIntegerSequence
class FieldType(Enum):
# generic fields
GENERIC = 0
# index fields are currently only used for boundary handling
# the coordinates are not the loop counters in that case, but are read from this index field
INDEXED = 1
# communication buffer, used for (un)packing data in communication.
BUFFER = 2
@staticmethod
def isGeneric(field):
assert isinstance(field, Field)
return field.fieldType == FieldType.GENERIC
@staticmethod
def isIndexed(field):
assert isinstance(field, Field)
return field.fieldType == FieldType.INDEXED
@staticmethod
def isBuffer(field):
assert isinstance(field, Field)
return field.fieldType == FieldType.BUFFER
"""
With fields one can formulate stencil-like update rules on structured grids.
This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.
Creating Fields:
To create a field use one of the static create* members. There are two options:
1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the
case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`)
2. create a more general kernel that works for variable array sizes. This can be used to create kernels
beforehand for a library. (see :func:`Field.createGeneric`)
Dimensions:
A field has spatial and index dimensions, where the spatial dimensions come first.
The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
looped over. Additionally N values are stored per cell. In this case spatialDimensions is two or three,
and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims``
Indexing:
When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol.
First specify the spatial offsets in [], then in case indexDimension>0 the indices in ()
Example without index dimensions:
>>> a = np.zeros([10, 10])
>>> f = Field.createFromNumpyArray("f", a, indexDimensions=0)
>>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4
Example with index dimensions: LBM D2Q9 stream pull
>>> stencil = np.array([[0,0], [0,1], [0,-1]])
>>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1)
>>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1)
>>> for i, offset in enumerate(stencil):
... sp.Eq(dst[0,0](i), src[-offset](i))
Eq(dst_C^0, src_C^0)
Eq(dst_C^1, src_S^1)
Eq(dst_C^2, src_N^2)
"""
def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy',
indexShape=None, fieldType=FieldType.GENERIC):
"""
Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes
:param fieldName: symbolic name for the field
:param dtype: numpy data type of the array the kernel is called with later
:param spatialDimensions: see documentation of Field
:param indexDimensions: see documentation of Field
:param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0)
:param indexShape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension,
has to be a list or tuple
if isinstance(layout, str):
layout = spatialLayoutStringToTuple(layout, dim=spatialDimensions)
shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,))
strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,))
totalDimensions = spatialDimensions + indexDimensions
if indexShape is None or len(indexShape) == 0:
shape = tuple([shapeSymbol[i] for i in range(totalDimensions)])
else:
shape = tuple([shapeSymbol[i] for i in range(spatialDimensions)] + list(indexShape))
strides = tuple([strideSymbol[i] for i in range(totalDimensions)])
npDataType = np.dtype(dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
return Field(fieldName, fieldType, dtype, layout, shape, strides)
@staticmethod
def createFromNumpyArray(fieldName, npArray, indexDimensions=0):
"""
Creates a field based on the layout, data type, and shape of a given numpy array.
Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
:param fieldName: symbolic name for the field
:param npArray: numpy array
:param indexDimensions: see documentation of Field
"""
spatialDimensions = len(npArray.shape) - indexDimensions
if spatialDimensions < 1:
raise ValueError("Too many index dimensions. At least one spatial dimension required")
fullLayout = getLayoutOfArray(npArray)
spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions])
assert len(spatialLayout) == spatialDimensions
strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides])
shape = tuple(int(s) for s in npArray.shape)
npDataType = np.dtype(npArray.dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
return Field(fieldName, FieldType.GENERIC, npArray.dtype, spatialLayout, shape, strides)
def createFixedSize(fieldName, shape, indexDimensions=0, dtype=np.float64, layout='numpy', strides=None):
Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
:param fieldName: symbolic name for the field
:param shape: overall shape of the array
:param indexDimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
:param dtype: numpy data type of the array the kernel is called with later
:param layout: full layout of array, not only spatial dimensions
:param strides: strides in bytes or None to automatically compute them from shape (assuming no padding)
spatialDimensions = len(shape) - indexDimensions
assert spatialDimensions >= 1
if isinstance(layout, str):
layout = layoutStringToTuple(layout, spatialDimensions + indexDimensions)
shape = tuple(int(s) for s in shape)
if strides is None:
strides = computeStrides(shape, layout)
else:
assert len(strides) == len(shape)
strides = tuple([s // np.dtype(dtype).itemsize for s in strides])
npDataType = np.dtype(dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
spatialLayout = list(layout)
for i in range(spatialDimensions, len(layout)):
spatialLayout.remove(i)
return Field(fieldName, FieldType.GENERIC, dtype, tuple(spatialLayout), shape, strides)
def __init__(self, fieldName, fieldType, dtype, layout, shape, strides):
"""Do not use directly. Use static create* methods"""
self._fieldName = fieldName
assert isinstance(fieldType, FieldType)
self.fieldType = fieldType
self._layout = normalizeLayout(layout)
self.shape = shape
self.strides = strides
def newFieldWithDifferentName(self, newName):
return Field(newName, self.fieldType, self._dtype, self._layout, self.shape, self.strides)
@property
def spatialDimensions(self):
return len(self._layout)
@property
def indexDimensions(self):
return len(self.shape) - len(self._layout)
@property
def layout(self):
return self._layout
@property
def name(self):
return self._fieldName
@property
def spatialShape(self):
return self.shape[:self.spatialDimensions]
@property
def indexShape(self):
return self.shape[self.spatialDimensions:]
@property
def hasFixedShape(self):
return self.shape[self.spatialDimensions:]
@property
def hasFixedIndexShape(self):
return isIntegerSequence(self.indexShape)
@property
def spatialStrides(self):
return self.strides[:self.spatialDimensions]
@property
def indexStrides(self):
return self.strides[self.spatialDimensions:]
@property
def dtype(self):
return self._dtype
def __repr__(self):
return self._fieldName
def neighbor(self, coordId, offset):
offsetList = [0] * self.spatialDimensions
offsetList[coordId] = offset
return Field.Access(self, tuple(offsetList))
return [self.__getitem__(s) for s in stencil]
@property
def vecCenter(self):
indexShape = self.indexShape
if len(indexShape) == 0:
return self.center
elif len(indexShape) == 1:
return sp.Matrix([self(i) for i in range(indexShape[0])])
elif len(indexShape) == 2:
def cb(*args):
r = self.__call__(*args)
return r
return sp.Matrix(*indexShape, cb)
def center(self):
center = tuple([0] * self.spatialDimensions)
return Field.Access(self, center)
def __getitem__(self, offset):
if type(offset) is np.ndarray:
offset = tuple(offset)
if type(offset) is str:
offset = tuple(directionStringToOffset(offset, self.spatialDimensions))
if type(offset) is not tuple:
offset = (offset,)
if len(offset) != self.spatialDimensions:
raise ValueError("Wrong number of spatial indices: "
"Got %d, expected %d" % (len(offset), self.spatialDimensions))
return Field.Access(self, offset)
def __call__(self, *args, **kwargs):
center = tuple([0]*self.spatialDimensions)
return Field.Access(self, center)(*args, **kwargs)
def __hash__(self):
return hash((self._layout, self.shape, self.strides, self._dtype, self.fieldType, self._fieldName))
selfTuple = (self.shape, self.strides, self.name, self.dtype, self.fieldType)
otherTuple = (other.shape, other.strides, other.name, other.dtype, other.fieldType)
PREFIX = "f"
STRIDE_PREFIX = PREFIX + "stride_"
SHAPE_PREFIX = PREFIX + "shape_"
STRIDE_DTYPE = createCompositeTypeFromString("const int *")
SHAPE_DTYPE = createCompositeTypeFromString("const int *")
DATA_PREFIX = PREFIX + "d_"
class Access(sp.Symbol):
def __new__(cls, name, *args, **kwargs):
obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
return obj
def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None):
fieldName = field.name
offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets
constantOffsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsetsAndIndex])
if not idx:
idx = tuple([0] * field.indexDimensions)
if constantOffsets:
offsetName = offsetToDirectionString(offsets)
if field.indexDimensions == 0:
superscript = str(idx[0])
else:
idxStr = ",".join([str(e) for e in idx])
if field.hasFixedIndexShape and not isinstance(field.dtype, StructType):
for i, bound in zip(idx, field.indexShape):
if i >= bound:
raise ValueError("Field index out of bounds")
else:
offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex))))
symbolName = "%s_%s" % (fieldName, offsetName)
if superscript is not None:
symbolName += "^" + superscript
obj = super(Field.Access, self).__xnew__(self, symbolName)
obj._field = field
obj._offsets = []
for o in offsets:
if isinstance(o, sp.Basic):
obj._offsets.append(o)
else:
obj._offsets.append(int(o))
obj._offsetName = offsetName
obj._superscript = superscript
obj._index = idx
return obj
def __getnewargs__(self):
return self.field, self.offsets, self.index
__xnew__ = staticmethod(__new_stage2__)
__xnew_cached_ = staticmethod(cacheit(__new_stage2__))
def __call__(self, *idx):
if self._index != tuple([0]*self.field.indexDimensions):
raise ValueError("Indexing an already indexed Field.Access")
idx = tuple(idx)
if self.field.indexDimensions == 0 and idx == (0,):
idx = ()
if len(idx) != self.field.indexDimensions:
raise ValueError("Wrong number of indices: "
"Got %d, expected %d" % (len(idx), self.field.indexDimensions))
return Field.Access(self.field, self._offsets, idx)
def __getitem__(self, *idx):
return self.__call__(*idx)
def __iter__(self):
"""This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
The __getitem__ would make it iterable"""
raise TypeError("Field access is not iterable")
@property
def field(self):
return self._field
@property
def offsets(self):
return self._offsets
@offsets.setter
def offsets(self, value):
self._offsets = value
@property
def requiredGhostLayers(self):
return int(np.max(np.abs(self._offsets)))
@property
def nrOfCoordinates(self):
return len(self._offsets)
@property
def offsetName(self):
return self._offsetName
n = self._field.latexName if self._field.latexName else self._field.name
return "{{%s}_{%s}^{%s}}" % (n, self._offsetName, self._superscript)
@property
def index(self):
return self._index
def getNeighbor(self, *offsets):
return Field.Access(self.field, offsets, self.index)
def neighbor(self, coordId, offset):
offsetList = list(self.offsets)
offsetList[coordId] += offset
return Field.Access(self.field, tuple(offsetList), self.index)
def getShifted(self, *shift):
return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)
def _hashable_content(self):
superClassContents = list(super(Field.Access, self)._hashable_content())
t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets)
def extractCommonSubexpressions(equations):
"""
Uses sympy to find common subexpressions in equations and returns
them in a topologically sorted order, ready for evaluation.
Usually called before list of equations is passed to :func:`createKernel`
"""
replacements, newEq = sp.cse(equations)
# Workaround for older sympy versions: here subexpressions (temporary = True) are extracted
# which leads to problems in Piecewise functions which have to a default case indicated by True
symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true}
replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true]
equations = replacementEqs + newEq
topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations])
equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs]
def getLayoutFromStrides(strides, indexDimensionIds=[]):
coordinates = list(range(len(strides)))
relevantStrides = [stride for i, stride in enumerate(strides) if i not in indexDimensionIds]
result = [x for (y, x) in sorted(zip(relevantStrides, coordinates), key=lambda pair: pair[0], reverse=True)]
return normalizeLayout(result)
def getLayoutOfArray(arr, indexDimensionIds=[]):
"""
Returns a list indicating the memory layout (linearization order) of the numpy array.
Example:
>>> getLayoutOfArray(np.zeros([3,3,3]))
In this example the loop over the zeroth coordinate should be the outermost loop,
followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
with different memory layout can be created.
The indexDimensionIds parameter leaves specifies which coordinates should not be
return getLayoutFromStrides(arr.strides, indexDimensionIds)
def createNumpyArrayWithLayout(shape, layout, alignment=False, byteOffset=0, **kwargs):
"""
Creates a numpy array with
:param shape: shape of the resulting array
:param layout: layout as tuple, where the coordinates are ordered from slow to fast
:param alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment
:param byteOffset: only used when alignment is specified, align not beginning but address at this offset
mostly used to align first inner cell, not ghost cells
>>> res = createNumpyArrayWithLayout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
>>> res.shape
(2, 3, 4, 5)
>>> getLayoutOfArray(res)
(3, 2, 0, 1)
"""
assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
currentLayout = list(range(len(shape)))
swaps = []
for i in range(len(layout)):
if currentLayout[i] != layout[i]:
indexToSwapWith = currentLayout.index(layout[i])
swaps.append((i, indexToSwapWith))
currentLayout[i], currentLayout[indexToSwapWith] = currentLayout[indexToSwapWith], currentLayout[i]
assert tuple(currentLayout) == tuple(layout)
shape = list(shape)
for a, b in swaps:
shape[a], shape[b] = shape[b], shape[a]
if not alignment:
res = np.empty(shape, order='c', **kwargs)
else:
if alignment is True:
alignment = 8 * 4
res = aligned_empty(shape, alignment, byteOffset=byteOffset, **kwargs)
for a, b in reversed(swaps):
res = res.swapaxes(a, b)
return res
def spatialLayoutStringToTuple(layoutStr, dim):
if layoutStr in ('fzyx', 'zyxf'):
assert dim <= 3
return tuple(reversed(range(dim)))
if layoutStr in ('fzyx', 'f', 'reverseNumpy', 'SoA'):
return tuple(reversed(range(dim)))
return tuple(range(dim))
raise ValueError("Unknown layout descriptor " + layoutStr)
def layoutStringToTuple(layoutStr, dim):
layoutStr = layoutStr.lower()
if layoutStr == 'fzyx' or layoutStr == 'soa':
assert dim <= 4
return tuple(reversed(range(dim)))
elif layoutStr == 'zyxf' or layoutStr == 'aos':
assert dim <= 4
return tuple(reversed(range(dim - 1))) + (dim-1,)
elif layoutStr == 'f' or layoutStr == 'reversenumpy':
return tuple(reversed(range(dim)))
elif layoutStr == 'c' or layoutStr == 'numpy':
return tuple(range(dim))
raise ValueError("Unknown layout descriptor " + layoutStr)
def normalizeLayout(layout):
"""Takes a layout tuple and subtracts the minimum from all entries"""
minEntry = min(layout)
return tuple(i - minEntry for i in layout)
def computeStrides(shape, layout):
"""
Computes strides assuming no padding exists
:param shape: shape (size) of array
:param layout: layout specification as tuple
:return: strides in elements, not in bytes
"""
N = len(shape)
assert len(layout) == N
assert len(set(layout)) == N
strides = [0] * N
product = 1
for j in reversed(layout):
strides[j] = product
product *= shape[j]
return tuple(strides)
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
def offsetComponentToDirectionString(coordinateId, value):
"""
Translates numerical offset to string notation.
x offsets are labeled with east 'E' and 'W',
y offsets with north 'N' and 'S' and
z offsets with top 'T' and bottom 'B'
If the absolute value of the offset is bigger than 1, this number is prefixed.
:param coordinateId: integer 0, 1 or 2 standing for x,y and z
:param value: integer offset
Example:
>>> offsetComponentToDirectionString(0, 1)
'E'
>>> offsetComponentToDirectionString(1, 2)
'2N'
"""
nameComponents = (('W', 'E'), # west, east
('S', 'N'), # south, north
('B', 'T'), # bottom, top
)
if value == 0:
result = ""
elif value < 0:
result = nameComponents[coordinateId][0]
else:
result = nameComponents[coordinateId][1]
if abs(value) > 1:
result = "%d%s" % (abs(value), result)
return result
def offsetToDirectionString(offsetTuple):
"""
Translates numerical offset to string notation.
For details see :func:`offsetComponentToDirectionString`
:param offsetTuple: 3-tuple with x,y,z offset
Example:
>>> offsetToDirectionString([1, -1, 0])
'SE'
>>> offsetToDirectionString(([-3, 0, -2]))
'2B3W'
"""
names = ["", "", ""]
for i in range(len(offsetTuple)):
names[i] = offsetComponentToDirectionString(i, offsetTuple[i])
name = "".join(reversed(names))
if name == "":
name = "C"
return name
def directionStringToOffset(directionStr, dim=3):
"""
Reverse mapping of :func:`offsetToDirectionString`
:param directionStr: string representation of offset
:param dim: dimension of offset, i.e the length of the returned list
>>> directionStringToOffset('NW', dim=3)
array([-1, 1, 0])
>>> directionStringToOffset('NW', dim=2)
array([-1, 1])
>>> directionStringToOffset(offsetToDirectionString([3,-2,1]))
array([ 3, -2, 1])
"""
offsetMap = {
'C': np.array([0, 0, 0]),
'W': np.array([-1, 0, 0]),
'E': np.array([1, 0, 0]),
'S': np.array([0, -1, 0]),
'N': np.array([0, 1, 0]),
'B': np.array([0, 0, -1]),
'T': np.array([0, 0, 1]),
}
offset = np.array([0, 0, 0])
while len(directionStr) > 0:
factor = 1
firstNonDigit = 0
while directionStr[firstNonDigit].isdigit():
firstNonDigit += 1
if firstNonDigit > 0:
factor = int(directionStr[:firstNonDigit])
directionStr = directionStr[firstNonDigit:]
curOffset = offsetMap[directionStr[0]]
offset += factor * curOffset
directionStr = directionStr[1:]
return offset[:dim]
if __name__ == '__main__':
f = Field.createGeneric('f', spatialDimensions=2, indexShape=(2,4))
f(2, 0)
fa = f[0, 1](4) ** 2
print(fa)
print(sp.latex(fa))