Newer
Older
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
from os.path import dirname, join
import numpy as np
import pycuda.autoinit # NOQA
import pycuda.gpuarray as gpuarray
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import sympy
import pystencils
from pystencils.interpolation_astnodes import LinearInterpolator
from pystencils.spatial_coordinates import x_, y_
type_map = {
np.float32: 'float32',
np.float64: 'float64',
np.int32: 'int32',
}
try:
import pyconrad.autoinit
except Exception:
import unittest.mock
pyconrad = unittest.mock.MagicMock()
LENNA_FILE = join(dirname(__file__), 'test_data', 'lenna.png')
try:
import skimage.io
lenna = skimage.io.imread(LENNA_FILE, as_gray=True).astype(np.float64)
pyconrad.imshow(lenna)
except Exception:
lenna = np.random.rand(20, 30)
def test_interpolation():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f).at([x_ + 2.7, y_ + 7.2])
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
pyconrad.imshow(lenna)
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out")
def test_scale_interpolation():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at([0.5 * x_ + 2.7, 0.25 * y_ + 7.2])
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out " + address_mode)
@pytest.mark.parametrize('address_mode',
['border',
'clamp',
pytest.param('warp', marks=pytest.mark.xfail(
reason="requires interpolation-refactoring branch")),
pytest.param('mirror', marks=pytest.mark.xfail(
reason="requires interpolation-refactoring branch")),
])
def test_rotate_interpolation(address_mode):
"""
'wrap', 'mirror' currently fails on new sympy due to conjugate()
"""
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
rotation_angle = sympy.pi / 5
transformed = sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_))
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out " + address_mode)
@pytest.mark.parametrize('dtype', (np.int32, np.float32, np.float64))
@pytest.mark.parametrize('address_mode', ('border', 'wrap', 'clamp', 'mirror'))
@pytest.mark.parametrize('use_textures', ('use_textures', False))
def test_rotate_interpolation_gpu(dtype, address_mode, use_textures):
rotation_angle = sympy.pi / 5
scale = 1
if dtype == np.int32:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna * 255, dtype))
else:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna, dtype))
x_f, y_f = pystencils.fields('x,y: %s [2d]' % type_map[dtype], ghost_layers=0)
transformed = scale * \
sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_)) - sympy.Matrix([2, 2])
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu', use_textures_for_interpolation=use_textures)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = gpuarray.zeros_like(lenna_gpu)
kernel(x=lenna_gpu, y=out)
pyconrad.imshow(out,
f"out {address_mode} texture:{use_textures} {type_map[dtype]}")
skimage.io.imsave(f"/tmp/out {address_mode} texture:{use_textures} {type_map[dtype]}.tif",
np.ascontiguousarray(out.get(), np.float32))
@pytest.mark.parametrize('address_mode', ['border', 'wrap', 'clamp', 'mirror'])
@pytest.mark.parametrize('dtype', [np.float64, np.float32, np.int32])
@pytest.mark.parametrize('use_textures', ('use_textures', False,))
def test_shift_interpolation_gpu(address_mode, dtype, use_textures):
rotation_angle = 0 # sympy.pi / 5
scale = 1
# shift = - sympy.Matrix([1.5, 1.5])
shift = sympy.Matrix((0.0, 0.0))
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
if dtype == np.int32:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna * 255, dtype))
else:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna, dtype))
x_f, y_f = pystencils.fields('x,y: %s [2d]' % type_map[dtype], ghost_layers=0)
if use_textures:
transformed = scale * sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_)) + shift
else:
transformed = scale * sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_)) + shift
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
# print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu', use_textures_for_interpolation=use_textures)
# print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = gpuarray.zeros_like(lenna_gpu)
kernel(x=lenna_gpu, y=out)
pyconrad.imshow(out,
f"out {address_mode} texture:{use_textures} {type_map[dtype]}")
skimage.io.imsave(f"/tmp/out {address_mode} texture:{use_textures} {type_map[dtype]}.tif",
np.ascontiguousarray(out.get(), np.float32))
@pytest.mark.parametrize('address_mode', ['border', 'clamp'])
def test_rotate_interpolation_size_change(address_mode):
"""
'wrap', 'mirror' currently fails on new sympy due to conjugate()
"""
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
rotation_angle = sympy.pi / 5
transformed = sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_))
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros((100, 150), np.float64)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "small out " + address_mode)
@pytest.mark.parametrize('address_mode, target',
itertools.product(['border', 'wrap', 'clamp', 'mirror'], ['cpu']))
def test_field_interpolated(address_mode, target):
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
assignments = pystencils.AssignmentCollection({
y_f.center(): x_f.interpolated_access([0.5 * x_ + 2.7, 0.25 * y_ + 7.2], address_mode=address_mode)
})
print(assignments)
ast = pystencils.create_kernel(assignments, target=target)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out " + address_mode)
def test_spatial_derivative():
x, y = pystencils.fields('x, y: float32[2d]')
tx, ty = pystencils.fields('t_x, t_y: float32[2d]')
diff = sympy.diff(x.interpolated_access((tx.center, ty.center)), tx.center)
print("diff: " + str(diff))