Newer
Older
import numpy as np
import sympy as sp
from pystencils.assignment import Assignment
from pystencils import Field, TypedSymbol, createIndexedKernel
from pystencils.backends.cbackend import CustomCppCode
from pystencils.boundaries.createindexlist import numpyDataTypeForBoundaryObject, createBoundaryIndexArray
from pystencils.cache import memorycache
class FlagInterface:
FLAG_DTYPE = np.uint32
def __init__(self, dataHandling, flagFieldName):
self.flagFieldName = flagFieldName
self.domainFlag = self.FLAG_DTYPE(1 << 0)
self._nextFreeFlag = 1
self.dataHandling = dataHandling
# Add flag field to data handling if it does not yet exist
if dataHandling.hasData(self.flagFieldName):
raise ValueError("There is already a boundary handling registered at the data handling."
"If you want to add multiple handlings, choose a different name.")
dataHandling.addArray(self.flagFieldName, dtype=self.FLAG_DTYPE, cpu=True, gpu=False)
ffGhostLayers = dataHandling.ghostLayersOfField(self.flagFieldName)
for b in dataHandling.iterate(ghostLayers=ffGhostLayers):
b[self.flagFieldName].fill(self.domainFlag)
def allocateNextFlag(self):
result = self.FLAG_DTYPE(1 << self._nextFreeFlag)
self._nextFreeFlag += 1
return result
def __init__(self, dataHandling, fieldName, stencil, name="boundaryHandling", flagInterface=None,
target='cpu', openMP=True):
assert dataHandling.hasData(fieldName)
self._dataHandling = dataHandling
self._fieldName = fieldName
self._indexArrayName = name + "IndexArrays"
self._target = target
self._openMP = openMP
self._boundaryObjectToBoundaryInfo = {}
self.stencil = stencil
self._dirty = True
self.flagInterface = flagInterface if flagInterface is not None else FlagInterface(dataHandling, name + "Flags")
gpu = self._target == 'gpu'
dataHandling.addCustomClass(self._indexArrayName, self.IndexFieldBlockData, cpu=True, gpu=gpu)
@property
def dataHandling(self):
return self._dataHandling
def getFlag(self, boundaryObj):
return self._boundaryObjectToBoundaryInfo[boundaryObj].flag
@property
def shape(self):
return self._dataHandling.shape
@property
def dim(self):
return self._dataHandling.dim
@property
def boundaryObjects(self):
return tuple(self._boundaryObjectToName.keys())
@property
def flagArrayName(self):
def getBoundaryNameToFlagDict(self):
result = {bObj.name: bInfo.flag for bObj, bInfo in self._boundaryObjectToBoundaryInfo.items()}
return result
def getMask(self, sliceObj, boundaryObj, inverse=False):
if isinstance(boundaryObj, str) and boundaryObj.lower() == 'domain':
flag = self.flagInterface.domainFlag
else:
flag = self._boundaryObjectToBoundaryInfo[boundaryObj].flag
arr = self.dataHandling.gatherArray(self.flagArrayName, sliceObj)
if arr is None:
return None
else:
result = np.bitwise_and(arr, flag)
if inverse:
result = np.logical_not(result)
return result
def setBoundary(self, boundaryObject, sliceObj=None, maskCallback=None, ghostLayers=True, innerGhostLayers=True,
replace=True):
"""
Sets boundary using either a rectangular slice, a boolean mask or a combination of both
:param boundaryObject: instance of a boundary object that should be set
:param sliceObj: a slice object (can be created with makeSlice[]) that selects a part of the domain where
the boundary should be set. If none, the complete domain is selected which makes only sense
if a maskCallback is passed. The slice can have ':' placeholders, which are interpreted
depending on the 'includeGhostLayers' parameter i.e. if it is True, the slice extends
into the ghost layers
:param maskCallback: callback function getting x,y (z) parameters of the cell midpoints and returning a
boolean mask with True entries where boundary cells should be set.
The x, y, z arrays have 2D/3D shape such that they can be used directly
to create the boolean return array. i.e return x < 10 sets boundaries in cells with
midpoint x coordinate smaller than 10.
:param ghostLayers see DataHandling.iterate()
"""
if isinstance(boundaryObject, str) and boundaryObject.lower() == 'domain':
flag = self.flagInterface.domainFlag
for b in self._dataHandling.iterate(sliceObj, ghostLayers=ghostLayers, innerGhostLayers=innerGhostLayers):
if maskCallback is not None:
mask = maskCallback(*b.midpointArrays)
if replace:
flagArr[mask] = flag
else:
np.bitwise_or(flagArr, flag, where=mask, out=flagArr)
np.bitwise_and(flagArr, ~self.flagInterface.domainFlag, where=mask, out=flagArr)
if replace:
flagArr.fill(flag)
else:
np.bitwise_or(flagArr, flag, out=flagArr)
np.bitwise_and(flagArr, ~self.flagInterface.domainFlag, out=flagArr)
self._dirty = True
return flag
def setBoundaryWhereFlagIsSet(self, boundaryObject, flag):
self._addBoundary(boundaryObject, flag)
def prepare(self):
if not self._dirty:
return
self._createIndexFields()
self._dirty = False
def triggerReinitializationOfBoundaryData(self, **kwargs):
if self._dirty:
self.prepare()
else:
ffGhostLayers = self._dataHandling.ghostLayersOfField(self.flagInterface.flagFieldName)
for b in self._dataHandling.iterate(ghostLayers=ffGhostLayers):
for bObj, setter in b[self._indexArrayName].boundaryObjectToDataSetter.items():
self._boundaryDataInitialization(bObj, setter, **kwargs)
def __call__(self, **kwargs):
if self._dirty:
self.prepare()
for b in self._dataHandling.iterate(gpu=self._target == 'gpu'):
for bObj, idxArr in b[self._indexArrayName].boundaryObjectToIndexList.items():
kwargs[self._fieldName] = b[self._fieldName]
kwargs['indexField'] = idxArr
dataUsedInKernel = (p.fieldName
for p in self._boundaryObjectToBoundaryInfo[bObj].kernel.parameters
if p.isFieldPtrArgument and p.fieldName not in kwargs)
kwargs.update({name: b[name] for name in dataUsedInKernel})
self._boundaryObjectToBoundaryInfo[bObj].kernel(**kwargs)
def geometryToVTK(self, fileName='geometry', boundaries='all', ghostLayers=False):
"""
Writes a VTK field where each cell with the given boundary is marked with 1, other cells are 0
This can be used to display the simulation geometry in Paraview
:param fileName: vtk filename
:param boundaries: boundary object, or special string 'domain' for domain cells or special string 'all' for all
boundary conditions.
can also be a sequence, to write multiple boundaries to VTK file
:param ghostLayers: number of ghost layers to write, or True for all, False for none
"""
if boundaries == 'all':
boundaries = list(self._boundaryObjectToBoundaryInfo.keys()) + ['domain']
elif not hasattr(boundaries, "__len__"):
boundaries = [boundaries]
masksToName = {}
for b in boundaries:
if b == 'domain':
masksToName[self.flagInterface.domainFlag] = 'domain'
else:
masksToName[self._boundaryObjectToBoundaryInfo[b].flag] = b.name
writer = self.dataHandling.vtkWriterFlags(fileName, self.flagInterface.flagFieldName,
masksToName, ghostLayers=ghostLayers)
writer(1)
# ------------------------------ Implementation Details ------------------------------------------------------------
if boundaryObject not in self._boundaryObjectToBoundaryInfo:
symbolicIndexField = Field.createGeneric('indexField', spatialDimensions=1,
dtype=numpyDataTypeForBoundaryObject(boundaryObject, self.dim))
ast = self._createBoundaryKernel(self._dataHandling.fields[self._fieldName],
symbolicIndexField, boundaryObject)
if flag is None:
flag = self.flagInterface.allocateNextFlag()
boundaryInfo = self.BoundaryInfo(boundaryObject, flag=flag, kernel=ast.compile())
self._boundaryObjectToBoundaryInfo[boundaryObject] = boundaryInfo
return self._boundaryObjectToBoundaryInfo[boundaryObject].flag
def _createBoundaryKernel(self, symbolicField, symbolicIndexField, boundaryObject):
return createBoundaryKernel(symbolicField, symbolicIndexField, self.stencil, boundaryObject,
target=self._target, openMP=self._openMP)
def _createIndexFields(self):
dh = self._dataHandling
ffGhostLayers = dh.ghostLayersOfField(self.flagInterface.flagFieldName)
for b in dh.iterate(ghostLayers=ffGhostLayers):
pdfArr = b[self._fieldName]
indexArrayBD = b[self._indexArrayName]
indexArrayBD.clear()
for bInfo in self._boundaryObjectToBoundaryInfo.values():
idxArr = createBoundaryIndexArray(flagArr, self.stencil, bInfo.flag, self.flagInterface.domainFlag,
bInfo.boundaryObject, ffGhostLayers)
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
if idxArr.size == 0:
continue
boundaryDataSetter = BoundaryDataSetter(idxArr, b.offset, self.stencil, ffGhostLayers, pdfArr)
indexArrayBD.boundaryObjectToIndexList[bInfo.boundaryObject] = idxArr
indexArrayBD.boundaryObjectToDataSetter[bInfo.boundaryObject] = boundaryDataSetter
self._boundaryDataInitialization(bInfo.boundaryObject, boundaryDataSetter)
def _boundaryDataInitialization(self, boundaryObject, boundaryDataSetter, **kwargs):
if boundaryObject.additionalDataInitCallback:
boundaryObject.additionalDataInitCallback(boundaryDataSetter, **kwargs)
if self._target == 'gpu':
self._dataHandling.toGpu(self._indexArrayName)
class BoundaryInfo(object):
def __init__(self, boundaryObject, flag, kernel):
self.boundaryObject = boundaryObject
self.flag = flag
self.kernel = kernel
class IndexFieldBlockData:
def __init__(self, *args, **kwargs):
self.boundaryObjectToIndexList = {}
self.boundaryObjectToDataSetter = {}
def clear(self):
self.boundaryObjectToIndexList.clear()
self.boundaryObjectToDataSetter.clear()
@staticmethod
def toCpu(gpuVersion, cpuVersion):
gpuVersion = gpuVersion.boundaryObjectToIndexList
cpuVersion = cpuVersion.boundaryObjectToIndexList
for obj, cpuArr in cpuVersion.values():
gpuVersion[obj].get(cpuArr)
@staticmethod
def toGpu(gpuVersion, cpuVersion):
from pycuda import gpuarray
gpuVersion = gpuVersion.boundaryObjectToIndexList
cpuVersion = cpuVersion.boundaryObjectToIndexList
for obj, cpuArr in cpuVersion.items():
if obj not in gpuVersion:
gpuVersion[obj] = gpuarray.to_gpu(cpuArr)
else:
gpuVersion[obj].set(cpuArr)
class BoundaryDataSetter:
def __init__(self, indexArray, offset, stencil, ghostLayers, pdfArray):
self.indexArray = indexArray
self.offset = offset
self.stencil = np.array(stencil)
self.pdfArray = pdfArray.view()
self.pdfArray.flags.writeable = False
arrFieldNames = indexArray.dtype.names
self.dim = 3 if 'z' in arrFieldNames else 2
assert 'x' in arrFieldNames and 'y' in arrFieldNames and 'dir' in arrFieldNames, str(arrFieldNames)
self.boundaryDataNames = set(self.indexArray.dtype.names) - set(['x', 'y', 'z', 'dir'])
self.coordMap = {0: 'x', 1: 'y', 2: 'z'}
self.ghostLayers = ghostLayers
assert coord < self.dim
return self.indexArray[self.coordMap[coord]] + self.offset[coord] - self.ghostLayers + 0.5
@memorycache()
def linkOffsets(self):
return self.stencil[self.indexArray['dir']]
@memorycache()
def linkPositions(self, coord):
return self.nonBoundaryCellPositions(coord) + 0.5 * self.linkOffsets()[:, coord]
@memorycache()
def boundaryCellPositions(self, coord):
return self.nonBoundaryCellPositions(coord) + self.linkOffsets()[:, coord]
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def __setitem__(self, key, value):
if key not in self.boundaryDataNames:
raise KeyError("Invalid boundary data name %s. Allowed are %s" % (key, self.boundaryDataNames))
self.indexArray[key] = value
def __getitem__(self, item):
if item not in self.boundaryDataNames:
raise KeyError("Invalid boundary data name %s. Allowed are %s" % (item, self.boundaryDataNames))
return self.indexArray[item]
class BoundaryOffsetInfo(CustomCppCode):
# --------------------------- Functions to be used by boundaries --------------------------
@staticmethod
def offsetFromDir(dirIdx, dim):
return tuple([sp.IndexedBase(symbol, shape=(1,))[dirIdx]
for symbol in BoundaryOffsetInfo._offsetSymbols(dim)])
@staticmethod
def invDir(dirIdx):
return sp.IndexedBase(BoundaryOffsetInfo.INV_DIR_SYMBOL, shape=(1,))[dirIdx]
# ---------------------------------- Internal ---------------------------------------------
def __init__(self, stencil):
dim = len(stencil[0])
offsetSym = BoundaryOffsetInfo._offsetSymbols(dim)
code = "\n"
for i in range(dim):
offsetStr = ", ".join([str(d[i]) for d in stencil])
code += "const int64_t %s [] = { %s };\n" % (offsetSym[i].name, offsetStr)
invDirs = []
for direction in stencil:
inverseDir = tuple([-i for i in direction])
invDirs.append(str(stencil.index(inverseDir)))
code += "const int %s [] = { %s };\n" % (self.INV_DIR_SYMBOL.name, ", ".join(invDirs))
offsetSymbols = BoundaryOffsetInfo._offsetSymbols(dim)
super(BoundaryOffsetInfo, self).__init__(code, symbols_read=set(),
symbols_defined=set(offsetSymbols + [self.INV_DIR_SYMBOL]))
@staticmethod
def _offsetSymbols(dim):
return [TypedSymbol("c_%d" % (d,), create_type(np.int64)) for d in range(dim)]
INV_DIR_SYMBOL = TypedSymbol("invDir", "int")
def createBoundaryKernel(field, indexField, stencil, boundaryFunctor, target='cpu', openMP=True):
elements = [BoundaryOffsetInfo(stencil)]
dirSymbol = TypedSymbol("dir", indexArrDtype.fields['dir'][0])
elements += [Assignment(dirSymbol, indexField[0]('dir'))]
elements += boundaryFunctor(field, directionSymbol=dirSymbol, indexField=indexField)
return createIndexedKernel(elements, [indexField], target=target, cpuOpenMP=openMP)