Skip to content
Snippets Groups Projects
kernelcreation.py 8 KiB
Newer Older
Martin Bauer's avatar
Martin Bauer committed
from types import MappingProxyType
import sympy as sp
from pystencils.assignment import Assignment
from pystencils.astnodes import LoopOverCoordinate, Conditional, Block, SympyAssignment
from pystencils.assignment_collection import AssignmentCollection
Martin Bauer's avatar
Martin Bauer committed
from pystencils.gpucuda.indexing import indexing_creator_from_params
from pystencils.transformations import remove_conditionals_in_staggered_kernel
Martin Bauer's avatar
Martin Bauer committed
def create_kernel(equations, target='cpu', data_type="double", iteration_slice=None, ghost_layers=None,
                  cpu_openmp=False, cpu_vectorize_info=None,
Martin Bauer's avatar
Martin Bauer committed
                  gpu_indexing='block', gpu_indexing_params=MappingProxyType({})):
Martin Bauer's avatar
Martin Bauer committed
    """
    Creates abstract syntax tree (AST) of kernel, using a list of update equations.
    :param equations: either be a plain list of equations or a AssignmentCollection object
Martin Bauer's avatar
Martin Bauer committed
    :param target: 'cpu', 'llvm' or 'gpu'
Martin Bauer's avatar
Martin Bauer committed
    :param data_type: data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name
Martin Bauer's avatar
Martin Bauer committed
                     to type
Martin Bauer's avatar
Martin Bauer committed
    :param iteration_slice: rectangular subset to iterate over, if not specified the complete non-ghost layer \
                            part of the field is iterated over
Martin Bauer's avatar
Martin Bauer committed
    :param ghost_layers: if left to default, the number of necessary ghost layers is determined automatically
Martin Bauer's avatar
Martin Bauer committed
                        a single integer specifies the ghost layer count at all borders, can also be a sequence of
Martin Bauer's avatar
Martin Bauer committed
                        pairs [(x_lower_gl, x_upper_gl), .... ]
Martin Bauer's avatar
Martin Bauer committed

    CPU specific Parameters:
Martin Bauer's avatar
Martin Bauer committed
    :param cpu_openmp: True or number of threads for OpenMP parallelization, False for no OpenMP
    :param cpu_vectorize_info: pair of instruction set name ('sse, 'avx', 'avx512') and data type ('float', 'double')
Martin Bauer's avatar
Martin Bauer committed

    GPU specific Parameters
Martin Bauer's avatar
Martin Bauer committed
    :param gpu_indexing: either 'block' or 'line' , or custom indexing class (see gpucuda/indexing.py)
    :param gpu_indexing_params: dict with indexing parameters (constructor parameters of indexing class)
Martin Bauer's avatar
Martin Bauer committed
                              e.g. for 'block' one can specify {'block_size': (20, 20, 10) }
Martin Bauer's avatar
Martin Bauer committed

    :return: abstract syntax tree object, that can either be printed as source code or can be compiled with
             through its compile() function
    """

    # ----  Normalizing parameters
Martin Bauer's avatar
Martin Bauer committed
    split_groups = ()
    if isinstance(equations, AssignmentCollection):
Martin Bauer's avatar
Martin Bauer committed
        if 'split_groups' in equations.simplification_hints:
            split_groups = equations.simplification_hints['split_groups']
Martin Bauer's avatar
Martin Bauer committed
        equations = equations.all_assignments
Martin Bauer's avatar
Martin Bauer committed

    # ----  Creating ast
    if target == 'cpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.cpu import create_kernel
        from pystencils.cpu import add_openmp
        ast = create_kernel(equations, type_info=data_type, split_groups=split_groups,
                            iteration_slice=iteration_slice, ghost_layers=ghost_layers)
        if cpu_openmp:
            add_openmp(ast, num_threads=cpu_openmp)
        if cpu_vectorize_info:
Martin Bauer's avatar
Martin Bauer committed
            import pystencils.backends.simd_instruction_sets as vec
            from pystencils.vectorization import vectorize
Martin Bauer's avatar
Martin Bauer committed
            vec_params = cpu_vectorize_info
Martin Bauer's avatar
Martin Bauer committed
            vec.selected_instruction_set = vec.x86_vector_instruction_set(instruction_set=vec_params[0],
                                                                          data_type=vec_params[1])
Martin Bauer's avatar
Martin Bauer committed
            vectorize(ast)
        return ast
    elif target == 'llvm':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.llvm import create_kernel
        ast = create_kernel(equations, type_info=data_type, split_groups=split_groups,
                            iteration_slice=iteration_slice, ghost_layers=ghost_layers)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    elif target == 'gpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.gpucuda import create_cuda_kernel
        ast = create_cuda_kernel(equations, type_info=data_type,
                                 indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params),
                                 iteration_slice=iteration_slice, ghost_layers=ghost_layers)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    else:
        raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,))


Martin Bauer's avatar
Martin Bauer committed
def create_indexed_kernel(assignments, index_fields, target='cpu', data_type="double", coordinate_names=('x', 'y', 'z'),
Martin Bauer's avatar
Martin Bauer committed
                          cpu_openmp=True, gpu_indexing='block', gpu_indexing_params=MappingProxyType({})):
Martin Bauer's avatar
Martin Bauer committed
    """
Martin Bauer's avatar
Martin Bauer committed
    Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with
Martin Bauer's avatar
Martin Bauer committed
    coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling.

Martin Bauer's avatar
Martin Bauer committed
    The coordinates are stored in a separated index_field, which is a one dimensional array with struct data type.
Martin Bauer's avatar
Martin Bauer committed
    This struct has to contain fields named 'x', 'y' and for 3D fields ('z'). These names are configurable with the
Martin Bauer's avatar
Martin Bauer committed
    'coordinate_names' parameter. The struct can have also other fields that can be read and written in the kernel, for
Martin Bauer's avatar
Martin Bauer committed
    example boundary parameters.

Martin Bauer's avatar
Martin Bauer committed
    index_fields: list of index fields, i.e. 1D fields with struct data type
    coordinate_names: name of the coordinate fields in the struct data type
Martin Bauer's avatar
Martin Bauer committed
    """

Martin Bauer's avatar
Martin Bauer committed
    if isinstance(assignments, AssignmentCollection):
        assignments = assignments.all_assignments
Martin Bauer's avatar
Martin Bauer committed
    if target == 'cpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.cpu import create_indexed_kernel
        from pystencils.cpu import add_openmp
        ast = create_indexed_kernel(assignments, index_fields=index_fields, type_info=data_type,
                                    coordinate_names=coordinate_names)
        if cpu_openmp:
            add_openmp(ast, num_threads=cpu_openmp)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    elif target == 'llvm':
        raise NotImplementedError("Indexed kernels are not yet supported in LLVM backend")
    elif target == 'gpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.gpucuda import created_indexed_cuda_kernel
Martin Bauer's avatar
Martin Bauer committed
        idx_creator = indexing_creator_from_params(gpu_indexing, gpu_indexing_params)
        ast = created_indexed_cuda_kernel(assignments, index_fields, type_info=data_type,
                                          coordinate_names=coordinate_names, indexing_creator=idx_creator)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    else:
        raise ValueError("Unknown target %s. Has to be either 'cpu' or 'gpu'" % (target,))


def create_staggered_kernel(staggered_field, expressions, subexpressions=(), target='cpu', **kwargs):
    """Kernel that updates a staggered field.

    Args:
        staggered_field: field that has one index coordinate and
                where e.g. f[0,0](0) is interpreted as value at the left cell boundary, f[1,0](0) the right cell
                boundary and f[0,0](1) the southern cell boundary etc.
        expressions: sequence of expressions of length dim, defining how the east, southern, (bottom) cell boundary
                     should be update
        subexpressions: optional sequence of Assignments, that define subexpressions used in the main expressions
        target: 'cpu' or 'gpu'
        kwargs: passed directly to create_kernel, iteration slice and ghost_layers parameters are not allowed
    Returns:
        AST
    """
    assert 'iteration_slice' not in kwargs and 'ghost_layers' not in kwargs
    assert staggered_field.index_dimensions == 1, 'Staggered field must have exactly one index dimension'
    dim = staggered_field.spatial_dimensions

    counters = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(dim)]
    conditions = [counters[i] < staggered_field.shape[i] - 1 for i in range(dim)]
    assert len(expressions) == dim
    final_assignments = []
    for d in range(dim):
        cond = sp.And(*[conditions[i] for i in range(dim) if d != i])
        a_coll = AssignmentCollection([Assignment(staggered_field(d), expressions[d])], list(subexpressions))
        a_coll = a_coll.new_filtered([staggered_field(d)])
        sp_assignments = [SympyAssignment(a.lhs, a.rhs) for a in a_coll.all_assignments]
        final_assignments.append(Conditional(cond, Block(sp_assignments)))
    ghost_layers = [(1, 0)] * dim

    ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, **kwargs)

    if target == 'cpu':
        remove_conditionals_in_staggered_kernel(ast)

    return ast